硅基和碳化硅基对比

硅基和碳化硅基对比 第一、二、三、四代半导体材料各有利弊,并无绝对的替代关系,而是在特定的应用场景中存在各自的比较优势。这应该是建立的一个常识认知。以下材料的性能对比: 硅属于半导体材料,其自身的导电性并不是很好。然而,可以通过添加适当的掺杂剂来精确控制它的电阻率。制造半导体前,必须将硅转换为晶圆片(wafer)。这要从硅锭的生长开始。单晶硅是原子以三维空间模式周期形成的固体,这种模式贯穿整个材料。多晶硅是很多具有不同晶向的小单晶体单独形成的,不能用来做半导体电路。多晶硅必须融化成单晶体,才能加工成半导体应用中使用的晶圆片。加工硅晶片生成一个硅锭要花一周到一个月的时间,这取决于很多因素,包括大小、质量和终端用户要求。超过75%的单晶硅晶圆片都是通过Czochralski(CZ,也叫提拉法)方法生长的。 至于碳化硅,与硅相比,碳化硅拥有更为优越的电气特性:①耐高压:击穿电场强度大,是硅的 10 [...]

By |2022-01-27T15:36:02+08:002022年2月2日|

功率半导体碳化硅基生产流程

功率半导体碳化硅基生产流程 其具体可以分为以下几步: (1)原料生成:(PVT气相形成,结构也多,控制度很难) 将高纯硅粉和高纯碳粉按工艺配方均匀混合,在 2,000℃以上的高温条件下,于反应腔室内通过特定反应工艺,去除反应环境中残余的、反应微粉表面吸附的痕量杂质,使硅粉和碳粉按照既定化学计量比反应合成特定晶型和颗粒度的碳化硅颗粒。再经过破碎、筛分、清洗等工序,制得满足晶体生长要求的高纯度碳化硅粉原料。每一批进行取样测试纯度、颗粒度等。 [...]

By |2022-01-27T15:24:01+08:002022年2月1日|

电解槽

电解槽 当前,在政策和市场双驱动下,氢能产业链火热发展,由此也带动了制氢环节的快速成长;而双碳目标的提出使“绿氢”成为减碳脱碳的重要途径。其中,电解水制氢是重要的制取绿氢的方法,电解水制氢规模的提升,也使电解槽市场迅速增长。 绿氢在制造成本上居高不下的主要原因是电价和电解水制氢系统,电解槽作为可再生能源大规模制氢的关键装备,在制氢系统总成本中的占比近50%。 因此,以电解槽为代表的氢能设备,对于制氢成本的降低起着关键性的作用。 什么是电解槽? [...]

By |2022-01-27T15:12:06+08:002022年1月31日|

半导体硅片生产流程

半导体硅片生产流程 半导体硅片的生产流程较长,涉及工艺较多。半导体抛光片生产环节包含了拉晶、滚圆、切割、 研磨、蚀刻、抛光、清洗等工艺;半导体外延片生产过程主要为在抛光片的基础 上进行外延生长;SOI 硅片主要采用键合或离子注入等方式制作。半导体硅片每 [...]

By |2022-01-27T15:04:10+08:002022年1月30日|

半导体硅基、碳化硅基

半导体硅基、碳化硅基 在功率半导体领域,主要的材料是硅和碳化硅等,首先看硅基。 全球半导体硅片行业市场集中度很高,主要被日本、德国、韩国、中国台湾等国家和地区的知名企业占据。目前,全球前五大半导体硅片企业规模较大,合计市场份额达93%。其中,日本信越化学市场份额27.58%,日本SUMCO市场份额24.33%,德国Siltronic市场份额14.22%,中国台湾环球晶圆市场份额为16.28%,韩国SK Siltron市场份额占比为10.16%。相较于行业前五大半导体硅片企业,硅产业集团规模较小,占全球半导体硅片市场份额2.18%。 半导体硅片是芯片制造的核心材料,芯片制造企业对半导体硅片的品质有着极高的要求,对供应商的选择非常慎重。根据行业惯例,芯片制造企业需要先对半导体硅片产品进行认证,才会将该硅片制造企业纳入供应链,一旦认证通过,芯片制造企业不会轻易更换供应商。 [...]

By |2022-01-27T14:55:29+08:002022年1月29日|

2022年的电子产业预测

2022年的电子产业预测 走过饱经波折的2021年之后,整个电子产业正式迈进了2022年。 虽然很多分析人士表示,电子产业过去两年正在遭受的芯片缺货在今年上半年还将持续,但在产业链的同心协力下,这个态势会在下半年得到缓解。同时,因为终端和上游正在全力推动科技产业的新变革,这就使得整个电子产业自上而下正在酝酿一波又一波的新机遇。 在这个百花争艳的时代拥有下述几个明显的特点。它们将在2022年持续影响电子产业,并将继续在未来的电子世界中扮演关键角色。 趋势一:第三代半导体持续发力 [...]

By |2022-01-27T14:48:12+08:002022年1月28日|

28纳米半导体

28纳米半导体 受到新冠疫情的影响,远程办公、网络购物迅速普及,PC、各类电子设备、游戏机等销量暴增。最终导致全球半导体供给不足。 就半导体而言,既有供给充分的产品、也有真正供给不足的产品,情况不尽相同。28纳米的半导体不管是现在还是未来都是热点。那么用于大部分电子设备的半导体集中在28纳米的理由是什么? 28纳米半导体有以下典型特点: 1.28纳米技术节点为采用平面型(Planer)晶体管的最后一代。 [...]

By |2022-01-27T11:21:18+08:002022年1月27日|

PEM水电解制氢应用进展

PEM水电解制氢应用进展 可再生能源加速发展使得大规模消纳可再生能源成为突出问题。Power-to-Gas(P2G)将可再生能源发电转化为氢气,可提高电力系统灵活性,正成为可再生能源发展和应用的重要方向。 PEM水电解制氢技术具备快速启停优势,能匹配可再生能源发电的波动性,逐步成为P2G制氢主流技术。过去10年全球加速推进可再生能源PEM电解水制氢示范项目建设,示范项目数量和单体规模呈现逐年扩大的趋势。 目前PEM水电解制氢已迈入10 MW级别示范应用阶段,100 [...]

By |2022-02-10T10:50:56+08:002022年1月26日|

PEM水电解制氢技术展望

PEM水电解制氢技术展望 PEM水电解制氢已步入商业化早期,制约技术大规模发展的瓶颈在于膜电极选用被少数厂家垄断的质子交换膜,阴、阳极催化剂材料需采用贵金属以及电解能耗仍然偏高。 为此发展新型水电解技术成为新趋势,基于融合碱性水电解和PEM水电解各自优势的研究思路,采用碱性固体电解质替代PEM的碱性固体阴离子交换膜(AEM)水电解制氢技术成为新方向。 相比PEM水电解,AEM水电解选用固体聚合物阴离子交换膜作为隔膜材料,膜电极催化剂、双极板材料可选性更宽广,未来突破阴离子交换膜和高活性非贵金属催化剂等关键材料有望显著降低电解槽制造成本。应用推广方面,当下电力系统中波动性可再生能源份额不断上升,未来几十年这一趋势仍将延续。 可再生能源制氢是唯一绿色低碳制氢方式,不仅能提高电网灵活性,而且可远距离运输和分配可再生能源,支持可再生能源更大规模的发展。作为媒介氢气促进可再生能源时空再分布,助力电力系统与难以深度脱碳的工业、建筑和交通运输部门建立起产业联系,不断丰富氢气的应用场景。这也为PEM水电解制氢技术带来巨大的发展空间。 [...]

By |2022-01-26T10:38:19+08:002022年1月24日|

无创血糖监测产业技术现状

无创血糖监测产业技术现状 一直以来,糖尿病患者的诊断以及治疗体验的改善是产业各界共同追寻的目标。从血糖检测领域来看,目前的检测方法已经历了即时检测(POCT)、持续监测(CGM)再到无创监测三个技术发展阶段。 无创血糖监测可避免POCT以及CGM刺破创口的痛苦,并且降低检测成本,更可避免血液感染疾病等安全问题,在检测效果上能实现实时监测,获得血糖的动态变化趋势。从市面上的产品来看,目前无创血糖监测原理大体可分为测定血液替代物与微渗透法、生物传感器法、光谱学法以及代谢守恒方法等。 测定血液替代物与微渗透法 测定血液替代物则运用唾液、汗液、泪液以及尿液等体液代替血液来测量其中的葡萄糖浓度。而在人体的代谢时间、情绪、环境以及药物等多方面影响下,往往测出来的血液替代物葡萄糖结果精度不高。 [...]

By |2022-01-23T09:53:37+08:002022年1月23日|
Go to Top