About 驰飞超声波

This author has not yet filled in any details.
So far 驰飞超声波 has created 2868 blog entries.
16 11, 2025

超声波喷涂碳纳米管改性材料至碳布基材

By |2025-11-13T09:57:36+08:002025年11月16日|

超声波喷涂碳纳米管改性材料至碳布基材 超声波喷涂碳纳米管改性材料至碳布基材 - 驰飞超声波喷涂 在先进材料与功能器件的研发领域中,碳布以其优异的柔韧性、高导电性、出色的机械强度及稳定的化学惰性,成为备受青睐的基材之一,广泛应用于能源存储、柔性电子及传感器等领域。然而,原生碳布的表面化学特性与比表面积有时难以满足更高性能的需求,因此,对其进行表面改性以引入新的功能特性至关重要。其中,将具有卓越导电性、机械强度和独特一维纳米结构的碳纳米管材料,通过精密、可控的工艺负载于碳布表面,是提升其综合性能的有效途径。在这一技术路径中,超声波喷涂技术脱颖而出,成为一种极具前景的沉积方法。 [...]

13 11, 2025

在陶瓷产品的表面热涂碳化钨碳化钼混合粉

By |2025-11-13T16:07:19+08:002025年11月13日|

在陶瓷产品的表面热涂碳化钨碳化钼混合粉 超声波喷涂设备,在陶瓷产品的表面热涂碳化钨碳化钼混合粉 在现代材料表面工程技术领域,超声波喷涂技术作为一种高精度、高效率的薄膜制备方法,正日益展现出其独特的优势。特别是在处理高性能陶瓷部件,并为其表面涂覆碳化钨与碳化钼这类超硬、高熔点的金属陶瓷混合粉末时,该技术提供了一种近乎理想的解决方案。此工艺的核心目标在于,通过构筑一道坚固的复合涂层,显著提升陶瓷基体在严苛工况下的耐磨性能、耐腐蚀性能以及抗高温氧化性能,从而大幅拓宽陶瓷材料的应用边界,延长关键部件的服役寿命。 要实现这一目标,首先离不开对陶瓷基体的精心预处理。待涂覆的陶瓷产品表面必须达到极高的洁净度与适当的活性,任何微量的油污、水分或尘埃都会成为涂层结合力的薄弱环节。因此,通常需要经过严格的有机溶剂超声清洗、去离子水漂洗及充分干燥。对于表面光滑致密的陶瓷,有时还需引入适度的喷砂粗化或特定的化学活化处理,旨在微观层面增加基体表面的粗糙度与化学活性,为后续涂层提供更强的机械嵌合与物理化学结合基础。 随后进入整个工艺流程中最为关键的环节之一——喷涂浆料的制备。这绝非简单的物理混合,而是一个涉及胶体化学与表面科学的精密过程。碳化钨与碳化钼粉末的粒度、形貌及其混合比例,直接决定了最终涂层的微观结构与性能导向。为了将这些极易团聚的微细粉末均匀、稳定地分散在液态介质中,必须精心选择合适的溶剂体系(如水基或醇类有机溶剂)并配伍高效的分散助剂。通过持续的机械搅拌与超声震荡,破坏颗粒间的范德华力,使其形成高度分散、沉降稳定的悬浮液体系。此外,根据工艺需求,还可能引入少量临时性粘结剂,旨在干燥阶段赋予未烧结的“生坯”涂层足够的初强度,防止其在搬运与入炉过程中破损。 [...]

12 11, 2025

高性能柔性薄膜太阳能电池

By |2025-11-13T12:44:26+08:002025年11月12日|

高性能柔性薄膜太阳能电池 高性能柔性薄膜太阳能电池 ,该类型电池采用超薄柔性设计,具有高转换效率、良好的弱光性能、优异的温度特性、高可靠性以及易弯曲成型等特点。电池厚度仅为10微米,约为传统晶体硅电池厚度的1/18,功率密度可达260W/㎡,面密度为114g/㎡,重量较常规同类材料降低约80%。经国际权威能源研究机构实验验证,基于该技术的双结薄膜太阳能电池转换效率可达31.6%。此外,衬底材料可重复使用约20次,显著降低了生产成本,同时赋予电池良好的柔性与适应性,为实现规模化、低成本生产提供了技术基础。 化合物半导体太阳能电池与硅基电池性能对比 作为III-V族化合物半导体太阳能电池,该类型电池在多个方面展现出优于硅基电池的特性: [...]

12 11, 2025

高产能自动化精密涂层解决方案

By |2025-11-12T15:49:37+08:002025年11月12日|

高产能自动化精密涂层解决方案 凭借丰富的行业经验及与行业领先企业的紧密合作,我们能够提供定制化工程解决方案,涵盖加工前后的处理站、自动装载功能以及定制化零件处理。驰飞超声波喷涂设备在研发工艺优化后,可轻松扩展至更高产能的生产流程。客户完成研发阶段后,可先部署中试系统,再逐步升级为高产能生产线。 联系我们 [...]

10 11, 2025

兆声波清洁技术

By |2025-11-12T16:23:55+08:002025年11月10日|

兆声波清洁技术 兆声波清洁技术 是一种先进的声学清洁方案,其原理温和且高效,可广泛应用于晶圆、光学元件、医疗植入物及工业零部件等领域。与传统的超声波清洁相比,兆声波系统具备更高的工作频率,能够在精密清洁过程中提供更细致的处理能力。 该系统通过压电换能器产生声学能量,所采用的频率通常在 0.8 [...]

Go to Top