About 驰飞超声波

This author has not yet filled in any details.
So far 驰飞超声波 has created 2927 blog entries.
9 12, 2025

碳粉类型大盘点

By |2025-12-04T10:41:25+08:002025年12月9日|

碳粉类型大盘点 在燃料电池(包括质子交换膜燃料电池PEMFC、阴离子交换膜燃料电池AEMFC等)中,导电碳粉是电极导电网络的核心组分,同时需作为催化剂(如Pt、非贵金属单原子催化剂)的载体,其种类选择直接影响电极的导电性、比表面积、催化剂分散性及电化学稳定性。以下是目前科研及工业中常用的碳粉类型,结合结构特性、应用场景及适配性展开说明: 一、传统炭黑(Carbon Black, CB) [...]

8 12, 2025

Mini/Micro LED 玻璃基板核心涂层

By |2025-12-10T16:23:57+08:002025年12月8日|

Mini/Micro LED 玻璃基板核心涂层 Mini/Micro LED玻璃基板表面涂覆的核心涂层包括:导电线路层、绝缘/钝化层、光学功能层,以及辅助工艺层。这些涂层协同赋予玻璃基板以导电性、绝缘性、光学优化与工艺适配,从而支撑高分辨率、高对比度、高可靠性的显示效果。 [...]

8 12, 2025

超声波喷雾热解制粉

By |2025-12-12T13:32:03+08:002025年12月8日|

超声波喷雾热解制粉 材料制备方面 纳米材料制备: 喷雾热解制粉是制备纳米材料的有效方法之一。通过精确控制前驱体溶液的浓度、喷雾速率、反应温度等参数,可以制备出粒径在纳米尺度的粉末。例如,在制备金属氧化物纳米粉末时,能够得到粒径从几纳米到几百纳米不等的颗粒。这些纳米粉末具有比表面积大、表面活性高的特点,在催化、传感等领域有广泛应用。 可以制备多种形态的纳米材料,如球形、棒状、片状等。以制备氧化锌纳米材料为例,通过调整喷雾热解过程中的参数,如反应温度和气体流速,可以使生成的氧化锌纳米颗粒呈现不同的形态。球形氧化锌纳米颗粒可用于紫外线防护,而棒状或片状的氧化锌纳米材料在光催化等领域可能具有更好的性能。 [...]

8 12, 2025

超声波涂覆Cu-Zn-Sn三金属催化剂

By |2025-12-04T10:24:10+08:002025年12月8日|

超声波涂覆Cu-Zn-Sn三金属催化剂 在能源转型与碳中和目标推动下,高效催化剂成为CO₂转化、电解水制氢等领域的核心需求。Cu-Zn-Sn三金属催化剂凭借组分协同效应展现出优异潜力,而超声波涂覆技术的引入,更实现了其性能的突破性提升,为多相催化领域提供了全新解决方案。 超声波涂覆技术通过高频声波引发的空化效应,构建了催化剂制备的独特优势。该工艺先将Cu、Zn、Sn前驱体与溶剂、黏合剂制成均匀浆料,再利用超声振动将其雾化成50-200nm的纳米级液滴,精准沉积于电极或载体表面。空化效应产生的局部冲击波与剪切力,不仅破解了传统涂覆中常见的金属颗粒团聚问题,还促使三金属组分原子级分散,形成厚度均一(均匀度±5%)的催化涂层。与浸渍法相比,其材料利用率从60%提升至95%以上,大幅降低了贵金属消耗。 Cu-Zn-Sn三金属的协同作用是催化活性提升的核心机制。Cu作为基础活性组分,为CO₂还原等反应提供多碳产物生成能力;Zn通过增强*COOH中间体吸附,强化CO₂活化效率;Sn则调控电子结构,优化*OCOH中间体结合能,提升甲酸等目标产物选择性。超声波涂覆形成的紧密界面接触,使三金属间电子转移效率提升40%,当Cu-Zn-Sn原子比为3:1:0.1时,协同效应最显著,CO₂电还原生成CO的法拉第效率可达70%以上。 结构表征与性能测试证实了该催化剂的优异特性。XRD分析显示,超声波处理促使Sn原子融入Cu-Zn晶格,形成稳定合金相;SEM图像表明其涂层呈现多孔结构,比表面积较传统工艺提升5倍。在电化学测试中,该催化剂在-0.8V电位下的电流密度达120mA·cm⁻²,过电位较单金属Cu催化剂降低15%。在300mA·cm⁻²高电流密度下,可连续稳定运行120小时,展现出超强耐久性。 [...]

6 12, 2025

超声波喷涂RuO₂催化剂

By |2025-12-11T14:35:25+08:002025年12月6日|

超声波喷涂RuO₂催化剂 超声波喷涂技术是当前RuO₂催化剂(尤其用于质子交换膜水电解PEMWE)膜电极(MEA)制备的关键工艺,其通过精准雾化与沉积,解决了传统工艺的痛点,同时提升RuO₂催化剂的活性与稳定性。以下从技术原理、核心优势、应用实例及性能表现四方面展开详解: 一、超声波喷涂RuO₂催化剂的技术原理 超声波喷涂技术通过“雾化-沉积”两步法实现RuO₂催化剂的精准涂覆,核心是利用高频超声振动打破传统喷涂的局限,适配RuO₂(贵金属氧化物,需高效利用与均匀分布)的特性: 1.雾化阶段 [...]

6 12, 2025

阴离子交换膜电解水系统中电解质进料的影响机制与性能调控

By |2025-12-03T16:10:15+08:002025年12月6日|

阴离子交换膜电解水系统中电解质进料的影响机制与性能调控 电解质进料是调控阴离子交换膜电解水系统(AEMWE)性能与运行稳定性的核心因素,其通过精准控制电极-电解质界面的pH环境,直接影响界面反应动力学与离子传输效率。其中,支持电解质的浓度调控尤为关键——合理的浓度水平是保障离子电导率、维持水分解反应持续高效进行的基础。工业实践中,通常向电解体系供给质量分数1~10%的碱性水溶液,该浓度范围可在保障离子传导效率的同时,避免过高浓度引发的膜溶胀或电极腐蚀问题。 进料模式对系统稳定性的调控作用 现有研究已证实,电解质的进料模式(单侧/双侧进料、对称/不对称进料)对AEMWE的长期运行性能存在显著影响。某团队在50℃条件下,以催化剂涂覆基底(CCS)工艺制备膜电极组件(MEA),采用胺化Radel聚砜作为离聚物,系统探究了去离子水(DIW)不同进料模式的影响规律,获得了具有指导意义的实验结论: - [...]

Go to Top