海水制氢技术挑战有哪些?
海水制氢技术挑战有哪些? 水是一种充足的自然资源,其约占地球表面的71%。其中,海水占地球全部水量的96.5%,与淡水不同,其成分非常复杂,涉及的化学物质及元素有92种。 海水中所含有的大量离子、微生物和颗粒等杂质,会导致制取氢气时产生副反应竞争、催化剂失活、隔膜堵塞等问题。为此,以海水为原料制氢形成了海水直接制氢和海水间接制氢两种不同的技术路线。 • 海水直接制氢的路线主要通过电解水制氢或光解水制氢方式制取; [...]
海水制氢技术挑战有哪些? 水是一种充足的自然资源,其约占地球表面的71%。其中,海水占地球全部水量的96.5%,与淡水不同,其成分非常复杂,涉及的化学物质及元素有92种。 海水中所含有的大量离子、微生物和颗粒等杂质,会导致制取氢气时产生副反应竞争、催化剂失活、隔膜堵塞等问题。为此,以海水为原料制氢形成了海水直接制氢和海水间接制氢两种不同的技术路线。 • 海水直接制氢的路线主要通过电解水制氢或光解水制氢方式制取; [...]
SOFC电解质材料 关于SOFC电解质材料,你想知道的都在这里! 固体氧化物燃料电池(SOFC)是一种全固态化学发电设备,可在中高温下将存储在燃料以及氧化剂中的化学能转化为电能,具有能量转换效率高、环境友好以及成用形式灵活等特点,在大型发电厂、汽车备用电源、航天以及化工等领域具有广阔的应用前景。 电解质材料是SOFC所有组分中的重要组分之一 。作为核心部件,其主要作用是传导离子,在阴极和阳极间形成导电通路。固体氧化物燃料电池对电解质的要求是比较高的,一般应具备如下的特征: [...]
PEM电解水制氢技术分析 PEM电解水制氢技术分析 - 喷涂薄膜 - [...]
一台汽车要搭载多少颗智能传感器? 以下文章来源于中国电子报 ,作者陈炳欣 “如何感受一辆汽车的智能化水平?坐进驾驶室里面感受一下。”“如何感受驾驶室的智能化水平?计算一下其中传感器的种类和数量。”这两句话反映了消费者对汽车智能化进程的最直观感受,也体现出传感器在汽车智能化中所起到的重要作用。近年来,汽车的智能化进程持续推进,驾驶座舱更是作为其中的代表,取得快速发展。传感器则成为智能座舱乃至整个智能汽车产业发展的关键环节之一。 新功能不断融入,智能座舱快速发展 [...]
PCB设计表面到底应不应该敷铜? 在pcb设计中,我们经常疑惑pcb的表面应不应该铺铜?这个其实是视情况而定的,首先我们需要了解表面敷铜带来的好处以及坏处。 首先我们先来看表面敷铜的好处 1. 表面铺铜可以对内层信号提供额外的屏蔽防护及噪声抑制; [...]
LCD和OLED工作原理及优劣对比 了解屏幕的工作原理,首先要了解什么是像素点。你看到一整块的画面实际上是由无数小点拼凑出来的,这些小点就是我们说的像素点。每个像素点由红绿蓝三个子像素构成。红绿蓝是三原色,可以通过红绿蓝三个子像素的颜色比例来得到一切你想要的颜色,这样每个像素点各司其职显示自己的颜色,最终拼凑出了你看到的完整的画面。分辨率指的是单位长度内包含像素点的数目。 1.LCD和OLED的工作原理 1.1、LCD工作原理 LCD的剖面图如下,主要有7层,从下到上依次是背光层、垂直偏光片、正极电路、液晶层、负极电路、水平偏光片和彩色滤光片。 [...]
为什么手机续航总不够? 移动式消费类产品设计中,功耗与续航始终是一个不小的挑战,以手机为例,电池容量越做越大,芯片功耗越来越低,但是手机续航时间并没有给消费者带来明显改善的体验。这主要在于手机新功能的加入,使得整机功耗增加,以至于大容量电池和低功耗IC延长的续航时间,又被新功能吃掉了。 功耗去哪了 比如当今流行的高刷新屏幕,早期的手机屏幕刷新率只有60Hz,现在90Hz、120Hz渐渐普及,对屏幕刷新率不敏感的用户现在也逐渐体会出高刷新率带来的更好的视觉体验。高刷新率往往意味着高数据速率,这就需要消耗更多的功耗。 同时,屏幕的亮度越来越高,早期的手机在阳光下显示基本不可见,得益于工艺的进步,现在的手机亮度轻松到达400nit,甚至逼近1000nit,屏幕本就是功耗大户,在高亮模式下,高功耗使得发热严重,而发热又进一步影响了功耗,因此夏天白天在户外,我们的手机摸起来就更热。 [...]
一文读懂电磁屏蔽原理 电磁屏蔽一般可分为三种:静电屏蔽、静磁屏蔽和高频电磁场屏蔽。三种屏蔽的目的都是防止外界的电磁场进入到某个需要保护的区域中,原理都是利用屏蔽对外场的感应产生的效应来抵消外场的影响。但是由于所要屏蔽的场的特性不同,因而对屏蔽壳材料的要求和屏蔽。 一、 静电屏蔽 静电屏蔽的目的是防止外界的静电场进入需要保护的某个区域。静电屏蔽依据的原理是:在外界静电场的作用下导体表面电荷将重新分布,直到导体内部总场强处处为零为止。接地的封闭金属壳是一种良好的静电屏蔽装置。接地的封闭金属壳把空间分割成壳内和壳外两个区域,金属壳维持在零电位。根据静电场的唯一性定理,可以证明:金属壳内的电场仅由壳内的带电体和壳的电位所确定,与壳外的电荷分布无关。当壳外电荷分布变化时,壳层外表面上的电荷分布随之变化,以保证壳内电场分布不变。因此,金属壳对内部区域具有屏蔽作用。壳外的电场仅由壳外的带电体和金属壳的电位以及无限远处的电位所确定,与壳内电荷分布无关。当壳内电荷分布改变时,壳层内表面的电荷分布随之变化,以保证壳外电场分布不变。因此,接地的金属壳对外部区域也具有屏蔽作用。在静电屏蔽中,金属壳接地是十分重要的。当壳内或壳外区域中的电荷分布变化时,通过接地线,电荷在壳层外表面和大地之间重新分布,以保证壳层电势恒定。从物理图像上看,因为在静电平衡时,金属内部不存在电场,壳内外的电场线被金属隔断,彼此无联系,因此,导体壳有隔离壳内外静电相互作用的效应。 [...]
锂离子电池快充技术 便携式可移动电子产品的功能越来越强大,电能消耗越来越快。因此,需要续航能力更强、容量更大的可充电电池为其提供电力能源。锂离子电池的快充技术在最近几年发展快速。 锂离子电池快充技术,是指将充电器的充电电压提高、充电电流增大,使电池被快速充电。例如:手机、笔记本中,普通充电技术一般采用0.5C的充电电流(这里的1C电流解释为:1倍的电池容量的电流,如2600mAh的电池,1倍电池容量的电流等于2600mA,那么1小时可以充满),30分钟只能充满25%的电量,而快充技术目前采用1.2 C至1.8 C的充电电流,能实现在30分钟内充满60%至80%的电量。 [...]
电磁屏蔽知多少? 不管什么电子产品,EMC始终是其需要面对的问题,EMC全拼是Electromagnetic Compatibility即电磁兼容性,EMC分为EMS(electromagnetic susceptibility)电磁抗扰度和EMI( Electromagnetic [...]